
Towards on embedded agent model for Android mobiles

Jorge Agüero, Miguel Rebollo, Carlos Carrascosa, Vicente Julián.
Departamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia
Camino de Vera S/N 46022 Valencia (Spain)

{jaguero, mrebollo, carrasco, vinglada}@dsic.upv.es

ABSTRACT
This paper presents, a new agent model “specially” designed
for the new Android1 Google SDK, where the Android mo-
bile phone can be considered as a software agent. This agent
model has an approach more practical than theoretical be-
cause it uses abstractions which makes possible its imple-
mentation on differents systems. The appearance of An-

droid as an open system based on Linux has created new
expectations for agent implementation. Agents may run in
different hardware platforms, one approach useful in Ubiq-
uitous Computing to achieve intelligent agents embedded in
the environment. This vision can be considered a real intel-
ligent ambient.

Keywords
Agent model, embedded agent, Android Google.

1. INTRODUCTION
The Ubiquitous Computing or Pervasive Computation [9] is
a paradigm in which the technology is virtually invisible in
our environment, because it has been inserted in the am-
bient with the objective of improving people’s life quality,
creating an intelligent ambient [5]. In the Pervasive Com-

putation, awareness is becoming an habitual characteristic
of our society with the appearance of electronics devices in-
corporated in all class of fixed or mobile objects (Embed-
ded system), connected by means of networks to each other.
It is a paradigm in which computing technology becomes
virtually invisible as a result of being embedded computer
artifact’s into our everyday environment [6].

One approach to implement pervasive computing is to em-
bed intelligent agents. An intelligent agent is a hardware
or (more usually) software-based computer system that has
the following properties: autonomy, social ability, reactiv-
ity and pro-activeness [12]. Embedded-computers that con-

1Android is trademark of Open Handset Alliance, where
Google is a member

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. MobiQuitous 2008, July 21-25, 2008, Dublin,
Ireland. Copyright c©2008 ICST ISBN 978-963-9799-27-1

tain these agents are normally referred to as embedded-agents

[11]. Each embedded agent is an autonomous entity, and it
is common for such embedded-agents to have network con-
nections allowing them to communicate and cooperate with
other embedded agents, as part of a multi-embedded agent
system.

The challenge, however, is how to manage and to imple-
ment the intelligent mechanisms used for these embedded
agents due to the limited processing power and memory ca-
pability of embedded computational hardware, the lack of
tools for the development of embedded applications and the
lack of standardisation. By these challenges and other found
problems [8], a remarkable difference between the concep-
tual agent model and the implemented or expected agent
has been detected.

Today, the appearance of the Android SDK made by Google
as a platform for the development of embedded applications
in mobile phones creates a new approach for implementing
embedded intelligent agent. Android is an open source plat-
form and the application development is made with a new
Java library (Java Android library) that is very close to Java
for personal computers (J2SE) [1]. Furthermore, there ex-
ists the possibility that the Android Linux Kernel can be
migrated to other platforms or electronic devices, allowing
to such agents to be executed in a wide variety of devices.

To sum up, the basic idea is to present an agent model that
can be designed using components or abstractions that can
be deployed on any programming platform, and how the An-

droid SDK allows the implementation of this agent model.
This will show the feasibility of implementing embedded
agents using these abstractions, reducing the gap between
the design of embedded agents and their implementation.
The rest of the document is structured as follows. Section 2
describes the proposed agent model. Section 3 details agent
implementation in Android. Finally, conclusions are shown
in section 4.

2. AGENT PLATFORM INDEPENDENT

MODEL
Major challenges in pervasive computing include invisibility
or unawareness, proactivity, mobility, privacy, security and
trust [5]. In such environments, hardware and software enti-
ties are expected to function autonomously, continually and
correctly.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3945 
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3945 



Traditionally, agents have been employed to work on behalf
of users, devices and applications [11]. The agents can be ef-
fectively used to provide transparent and invisible interfaces
between different entities in the environment. Agent inter-
action is an integral part of pervasive (intelligent) environ-
ments because agents acquire and apply effectively knowl-
edge in their ambient.

At the moment, there is a large amount of agent models
that provide a high-level description of their components and
their functionality. To define the agent model presented in
this paper, some of the most used and complete agent model
proposals have been studied. The first step was to extract
their common features and adapt it to the new proposal. In
this way, Tropos [3], Gaia [13], Opera [7], Ingenias [10] and
AML [4] have been considered, because they are some of the
most commonly used.

An agent model provides an abstract vision of its main com-
ponents and their existing relationship. The approach to
build the agent model uses the MDA (Model Driven Archi-
tecture) philosophy, which divides the different models into
two classes: a set of platform independent models (PIM)
and another set closely related with the supporting plat-
form (platform specific model - PSM). It is a way to develop
applications which allows us to separate the logic of the ap-
plication from the platform used to its implementation. This
philosophy, used in “classic software”, is also valid for agent
development. Figure 1 shows the agent model presented in
this paper, that is called APIM (Agent Platform Indepen-
dent Model).

Figure 1: APIM structure.

The highest-level entity to be considered in this model is the
agent. At this level, organizations of higher order, group be-
longing rules or behaviour norms, are not taken into account

for reasons of brevity.

2.1 Agent
An Agent has an identifier and a public name. The en-
vironment is represented by means of its relationship with
Environment, allowing to define input and output ports to
communicate with the outside. Agent’s knowledge base is
kept in its belief set and its goal set. The agent has two
messages queues, Input and Output, to communicate with
the outside, which temporally store incoming and outcoming
messages respectively. Besides messages, the agent can be
aware of event arrival, being stored in EventQueue. Lastly,
the agent has a State, related with its life-cycle and with its
visibility by other agents.

With regards to the problem-solving methods, the agent has
a set of core components. The Capabilities which represent
the know-how of the agent and follow an event-condition-
action scheme. To improve the efficiency of the agent, Ca-

pabilities are grouped into Behaviours that define the roles
the agent can play. By doing that, can be kept active (ready)
any Capability related with the current situation, avoiding
overload the agent with unnecessary knowledge.

2.2 Behaviours
A set of Behaviours is defined in the agent to distinguish
between different environments and attention focuses. Basi-
cally, Behaviours are used to reduce and delimit the knowl-
edge the agent has to use to solve a problem. So, those
methods, data, events or messages that are not related with
the current agent stage should not be considered. In this
way, the agent’s efficiency in problem-solving process is im-
proved. A Behaviour has a Name to identify itself. It also
has associated a Goals set that may be used either as acti-
vation or maintenance conditions. Lastly, it includes a state

indicating its current activation situation. It is important
to remark that more than one Behaviour may be active at
the same time.

2.3 Capabilities
An event is any notification arriving to the agent informing
that something that may be of interest for the agent has
happened in the environment or inside the agent. It may
have caused the activation of a new Capability.

The Tasks that the agent knows how to fulfill are modelled as
Capabilities. Capabilities are stored inside the Behaviours

and they model the agent’s answer to certain events. A
Capability is characterised by a Name that identifies it, its
trigger Event, an activation Condition and the Task that
have to be executed when the event arrives and the indi-
cated condition is fulfilled. It is also indicated the State the
Capability has. Only the Capabilities belonging to current
active Behaviours are executed.

All the Capabilities of an active Behaviour will be in a state
marked as Active. When an event arrives, the Capabil-

ity state changes to Relevant and its activation condition
is evaluated. If this condition is fulfilled, the state passes
to Applyable and the associated Task begins its execution.
When this Task ends, the Capability return to Active again
and it remains waiting the arrival of new events. When a

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3945 
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3945 



Behaviour becomes Inactive, all its Capabilities stop their
execution and change their state to inactive. It is assumed
that all the Capabilities of an active Behaviour can be con-
currently executed, so that the system have to provide the
needed methods to avoid deadlocks and inconsistencies dur-
ing their execution.

2.4 Tasks
The last component of the agent model is the Task. Tasks

are the elements containing the code associated to the Ca-

pabilities of the agent. One Task in execution belongs only
to one Capability and it will remain in execution until its
completion or until the Capability is interrupted because
the Behaviour it pertains to is deactivated. It is not de-
fined any method of recovering nor resuming of interrupted
Tasks. On the other hand, the agent must have some mech-
anism of “safe stop” to avoid the agent to fall in inconsistent
states.

3. IMPLEMENTING APIM IN ANDROID
The developing of APIM in Android was made using An-

droid building block APIs (the API Version m5-rc14) [2].
There are four main components to model APIM agents:
Agent, Behaviour, Capability and Task [1]. Table 1
shows the Android blocks used for building components of
the APIM model and another necessary components.

The design presented can be seen as an interface to im-
plement the agent according to the users requirements and
needs. This interface uses specific components provided by
the API, as previously commented. Thereby this model in-
serts a new layer in the Android system architecture[1]. This
new layer, called Agent interface, modifies the architecture
as it is seen in the figure 2.

Figure 2: Agent interface in Android System Archi-

tecture.

3.1 Agent

The Agent class is designed to handle the arrival of events.
Therefore an agent has to consider the changes in its envi-
ronment (may be of interest for the agent) to determine its
future actions activating and deactivating the appropriate
Behaviours to respond to any internal or external situation.
In this way, Agent class is implemented as one Android Ser-

vice and one Activity as screen interface.

To implement the APIM model, some methods of Service

class have to be overloaded. The onCreate() method al-
lows to initialise the agent variables. After the onStart()

method is executed that enables the agent components. The
agent is executed until the user decides to stop its execu-
tion. In this moment, the user call selfstop() or stopSer-
vice() method, allowing effectively to terminate the agent
execution. Every agent component is stopped and destroyed
(Tasks, Capabilities and Behaviours).

The agent interface designed has several methods that allow
to implement the APIM, but there are two methods that are
important to mention: the init() method, where the user
may write the code necessary to initialise the agent, and
the run() method, that activates roles that the agent has
to play (active the Behaviours). The init() is executed
within Service’s onStart(), that is called when the agent
starts for first time. The Agent class can also launch a UI
(User Interface), one Activity, to interact with users and to
show its internal state and progress.

3.2 Behaviour
The Behaviour class works as a container of the Agent Ca-

pabilities and it can group as many Capabilities as the user
desires. All of them can be activated and deactivated when
events arrive. Behaviours are implemented by mean of an
IntentReceiver class of the Android APIs. This base class
receive intents sent by events of the Android platform. An
IntentReceiver have to be dynamically registered to treat
intents, using registerReceiver() method.

The IntentReceiver will be running on the main agent thread.
The Receiver will be called when any intent arrives and it
matches with the intents filters, i.e. bind an intent to ob-
ject that is the receiver of the intent. As the agent may
play one or more roles at any moment, the Behaviour class

can activate new roles to register the respective handlers (of
intents). For example, a role may be activated as a spe-
cial Agent Behaviour when the battery phone is low. This
can be done by an IntentReceiver that receives the intent
LOW BATTERY.

The Behaviour interface designed has several methods, but
two main methods are provided to add and to remove the
Capabilities: add(capability) and remove(capability).

3.3 Capabilities
Capabilities are characterised by its trigger Event, an acti-
vation Condition and the Task that must be executed when
some event arrives and the indicated condition that is ful-
filled. The Capability is implemented by means of an Inten-

tReceiver class of the Android APIs. This base class receives
intents sent from events of the Android platform, so this is
similar to Behaviours.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3945 
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3945 



Table 1: The Android components used in the APIM model.

APIM Components Android Components Overloaded methods
Agent Service + Activity onCreate(), onStart(), onDestroy()

Behaviour IntentReceiver registerReceiver(), onReceiveIntent()
Capability IntentReceiver registerReceiver(), onReceiveIntent()

Task Service onStart(), onDestroy()
Goals Intents IntentFilter()
Events Intents IntentFilter()
Beliefs Contentprovider –

ACL Communications http –

A Capability is always running an IntentReceiver. When an
intent arrives and the condition is fulfilled, then the code
in onReceiveIntent() method is considered to be a fore-
ground process and will be kept running by the system for
manipulating the intent. In this moment then the Task is
launched. The Capability interface designed has one im-
portant method for matching a Task to its corresponding
Capability, the addTaskRun(task) method.

3.4 Tasks
Finally, Task class is one special process to run as an Android

Service. To implement the Task, some methods of Service

class have to be overloaded. The onCreate() method allows
initialise Task variables when it is launched the onStart()

method allows to execute the user code, throughout a call to
a doing() method that has to be overloaded by the program-
mer. Now, the main method of Task interface is doing(),
in where the user writes the Java program to be executed.

4. CONCLUSIONS
A general agent model to build intelligent agents in Android

platform has been presented in this paper. This model can
be easily adapted to almost any hardware/software platform
or architecture. Moreover, the agent model has been imple-
mented and tested in the new Android platform. The agent
interface designed makes possible the implementation of em-
bedded agents according to the users requirements.

The use of the Android platform shows the utility and proves
the feasibility of designing platform independent agents. More-
over, the use of the proposed model abstractions for the
APIM agent reduces the gap between the theoretical model
and its implementation.

As future works, the services the agent can deliver will be
enriched and enhanced from this first version. At the mo-
ment, the prototype has been developed using an Android

emulator. A more precise evaluation of the proposed agent
architecture will be donde when the first mobile phone using
Android system will be launched.

5. REFERENCES
[1] Android SDK, An Open Handset Alliance Project,

Web Site, http://code.google.com/android/, January
2008.

[2] Android SDK, Download the Android SDK, Web Site,
http://code.google.com/android/download list.html, ,
January 2008.

[3] Castro J., Kolp M. and Mylopoulos J., A
Requirements-Driven Software Development
Methodology, Conference on Advanced Information
Systems Engineering, 2001.

[4] Cervenka R. and Trencansky I., The Agent Modeling
Language – AML. Whitestein Series in Software Agent
Technologies and Autonomic Computing, 2007, ISBN:
978-3-7643-8395-4.

[5] Cook D. and Sajal K. Das, How smart are our
environments? An updated look at the state of the
art. Pervasive and Mobile Computing, Volume 3, Issue
2, 2007.

[6] Davidsson P. and Boman M., Distributed monitoring
and control of office buildings by embedded agents.
Information Sciences, Volume 171, Issue 4, 2005

[7] Dignum V., A model for organizational interaction:
based on agents, founded in logic. PhD Dissertation,
Utrecht University, 2003.

[8] Doctor F., Hagras H. and Callaghan V., A type-2
fuzzy embedded agent to realise ambient intelligence
in ubiquitous computing environments. Information
Sciences, Volume 171, Issue 4, 2005

[9] European Research Consortium for Informatic and
Mathematics (ERCIM NEWS), Special: Embedded
Intelligence. Number 67, October 2006

[10] Gomez Sanz J. J., Modelado de Sistemas
Multi-Agente. PhD Thesis, Universidad Complutense
de Madrid, 2002, Spain.

[11] Hagras H., Callaghan V. and Colley M., Intelligent
embedded agents. Information Sciences, Volume 171,
Issue 4, 2005

[12] Wooldridge, M and Nicholas R. Jennings, Agent
Theories, Architectures, and Languages: a Survey, in
Wooldridge and Jennings Eds., Intelligent Agents,
Berlin: Springer-Verlag, 1995

[13] Zambonelli F., Jennings N. and Wooldridge M.,
Developing Multiagent Systems: The Gaia
Methodology, ACM Transactions on Software
Engineering and Methodology, Vol. 12. p. 317-370,
2003.

Digital Object Identifier: 10.4108/ICST.MOBIQUITOUS2008.3945 
http://dx.doi.org/10.4108/ICST.MOBIQUITOUS2008.3945 


